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Punch lines
The image of 1 under good map is good.

The image of 1 under super good map is super good.

Images: symmetric polynomials; good maps: Harish-Chandra isom.
We solved the Type A super analog:

Shimura Operators

on Hermitian sym. sp.

Supersymmetric Shimura Operators

of Hermitian sym. superpairs

Okounkov Polynomials Sergeev–Veselov Polynomials

superization

[SZ19]

superization

[Zhu22, SZ23]
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Background

1. Shimura: multivariate generalization of nearly holomorphic automorphic
forms.

2. Introduced certain G-invariant differential operators on a Hermitian
X := G/K [Shi90] Invariant differential operators on hermitian
symmetric spaces, Ann. of Math.

3. Wanted symmetric and non-negative operators spanning the space of inv.
diff. op. D(X)

4. Rank 1: Laplace–Beltrami operators generalize Laplace operators

5. Sahi & Zhang’s [SZ19]: spectrum of these Shimura operators ∼
Okounkov polynomials.

6. These are the even & symmetric polynomials with prescribed zeros (thus
the word interpolation).

7. The theory of symmetric functions gives answers to Shimura’s problem.
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Some Lie stuff

Lie groups G,K, ... c, noncpt/cpt., s.s., etc −→ Lie algebras g, k, ...
We will: look at the complex(ified) Lie (super)algebras; consistently use
Frakturs to denote Lie algebras and subspaces therein.

1. Tangent space at eG;

2. Can be defined axiomatically (Lie bracket)

2.1 [X,X] = 0 (skew symmetry, char ̸= 2)
2.2 [[X,Y ], Z] = [X, [Y,Z]]− [Y, [X,Z]] (Jacobi id.)

Point: easier to look at. Both in terms of structures and representations.
gl(V ): all endomorphisms on V , Lie bracket: [f, g] = fg − gf

g-module/representation

(g
π−→ gl(V ), V ): π([X,Y ]) = π(X)π(Y )− π(Y )π(X)

Often write X.v for π(X)(v). So [X,Y ].v = X.(Y.v)− Y.(X.v).



5/28

Background Symmetric polynomials Results References

Some Lie stuff

Lie groups G,K, ... c, noncpt/cpt., s.s., etc −→ Lie algebras g, k, ...
We will: look at the complex(ified) Lie (super)algebras; consistently use
Frakturs to denote Lie algebras and subspaces therein.

1. Tangent space at eG;

2. Can be defined axiomatically (Lie bracket)

2.1 [X,X] = 0 (skew symmetry, char ̸= 2)
2.2 [[X,Y ], Z] = [X, [Y,Z]]− [Y, [X,Z]] (Jacobi id.)

Point: easier to look at. Both in terms of structures and representations.
gl(V ): all endomorphisms on V , Lie bracket: [f, g] = fg − gf

g-module/representation

(g
π−→ gl(V ), V ): π([X,Y ]) = π(X)π(Y )− π(Y )π(X)

Often write X.v for π(X)(v). So [X,Y ].v = X.(Y.v)− Y.(X.v).



5/28

Background Symmetric polynomials Results References

Some Lie stuff

Lie groups G,K, ... c, noncpt/cpt., s.s., etc −→ Lie algebras g, k, ...
We will: look at the complex(ified) Lie (super)algebras; consistently use
Frakturs to denote Lie algebras and subspaces therein.

1. Tangent space at eG;

2. Can be defined axiomatically (Lie bracket)

2.1 [X,X] = 0 (skew symmetry, char ̸= 2)
2.2 [[X,Y ], Z] = [X, [Y,Z]]− [Y, [X,Z]] (Jacobi id.)

Point: easier to look at. Both in terms of structures and representations.

gl(V ): all endomorphisms on V , Lie bracket: [f, g] = fg − gf

g-module/representation

(g
π−→ gl(V ), V ): π([X,Y ]) = π(X)π(Y )− π(Y )π(X)

Often write X.v for π(X)(v). So [X,Y ].v = X.(Y.v)− Y.(X.v).



5/28

Background Symmetric polynomials Results References

Some Lie stuff

Lie groups G,K, ... c, noncpt/cpt., s.s., etc −→ Lie algebras g, k, ...
We will: look at the complex(ified) Lie (super)algebras; consistently use
Frakturs to denote Lie algebras and subspaces therein.

1. Tangent space at eG;

2. Can be defined axiomatically (Lie bracket)

2.1 [X,X] = 0 (skew symmetry, char ̸= 2)
2.2 [[X,Y ], Z] = [X, [Y,Z]]− [Y, [X,Z]] (Jacobi id.)

Point: easier to look at. Both in terms of structures and representations.
gl(V ): all endomorphisms on V , Lie bracket: [f, g] = fg − gf

g-module/representation

(g
π−→ gl(V ), V ): π([X,Y ]) = π(X)π(Y )− π(Y )π(X)

Often write X.v for π(X)(v). So [X,Y ].v = X.(Y.v)− Y.(X.v).



6/28

Background Symmetric polynomials Results References

Some Lie stuff

For good Lie algebras (semisimple/reductive), their irreducible representations
are completely understood by the so-called highest weight theory.

Gist: a character λ defined on the Cartan subalgebra (a max. abelian
subalgebra) and a Borel subalgebra b (choice of positivity) totally determine
an irrep Vλ of g. Think of a “bar code” and a “scanner”.
Finite dimensional ones ↔ Dominant & integral λ (like a partition!)

Example

gl(2) X = ( 0 1
0 0 ), Y = ( 0 0

1 0 ), and [X,Y ] = ( 1 0
0 −1 ) =: H.

Cartan t:= diag. matrices; Borel b:= t⊕ CX; Let ϵi be the coordinate of the
i-th entry on the diagonal, then (3,−1) = 3ϵ1 − ϵ2 gives a 5D irrep while
(−1, 3) or (3/2, 1) do not ((3/2, 1/2) does).
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Some Lie stuff

Can’t multiply on g, unlike in gl(V ) (multiplication of matrices).
This motivates the notion of universal enveloping algebra U(g) := U where
multiplication becomes possible.

Theorem (Poicaré–Birkhoff–Witt Theorem for basis)

Let {X1, . . . , Xn} be an ordered basis for g. Then {Xi1 · · ·Xik : i1 ≤ · · · ≤ ik}
is a basis for U(g), and XiXj −XjXi = [Xi, Xj ] ∈ g. (In other words, this
tells us how to multiply things and sort them, and the associated graded
algebra gr(U(g)) ∼= S(g).)

Universality: g-mod = U(g)-mod.
Special case: for abelian g, U(g) = S(g).
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In context
Let X := G/K be as above. Change the point of view to Lie algebras.

1. (g, k): Harish-Chandra decomposition [(−1, 0, 1)-grading]
g = p− ⊕ k⊕ p+(= k⊕ p)

[k, p±] = p±,[p+, p+] = [p−, p−] = 0, [p+, p−] = k

E.g. (gl(2n), gl(n)⊕ gl(n)) (The center doesn’t matter here)(
k p+

p− k

)
2. D = D(X): space of invariant differential operators on X.

U := U(g); Uk := Zk(U); (Uk)k := Uk ∩ Uk.

3. Then D ∼= Uk/(Uk)k. This is the algebraic description of D.

4. g = k⊕ a⊕ n: Iwasawa decomposition (Group: G = KAN). Here a is
maximally abelian in p = p− ⊕ p+. May identify S(a) with P(a∗).

5. γ0 : D → Λ ⊆ P(a∗): the Harish-Chandra isomorphism. Good map!

Essentially a symmetry-preserving projection, shifted by ρ (determined
by b)
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Schmid decomposition and Shimura operators

P(n) := {λ : ℓ(λ) = n}, Pd(n) := {λ ∈ P(n) : |λ| = d}.

Schmid decomposition ([Sch70, FK90]) for k-mods:

Sd(p+) =
⊕

λ∈Pd(n)

Wλ, S
d(p−) =

⊕
λPd(n)

W ∗
λ .

Here we choose a form to identify p− with (p+)∗.

Shimura Operators

Endk (Wλ) ∼= (W ∗
λ ⊗Wλ)

k
↪→

(
S
(
p−

)
⊗S

(
p+

))k →Uk → D

1 7−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Dλ 7→ Dλ

Call Dλ the Shimura operator associated with λ .

A basis parameterized by partitions! Nice images of 1’s.
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Lie superalgebras

General Principle of Superization (Z2 =
{
0, 1

}
)

A (good) Z2-grading for “everything”!

Definition

A vector superspace V is a Z2-graded vector space V = V0 ⊕ V1. A vector
v ∈ V0 (resp. V1) is said to be even (resp. odd) and we set |v| = 0 (resp. 1).
We let Cm|n denotes the vector superspace with even subspace Cm and odd
subspace Cn.
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Lie superalgebras

Definition

A Lie superalgebra is a vector superspace g = g0 ⊕ g1 with a bilinear map
[−,−] : g⊗ g → g (Lie superbracket) satisfying

1. [X,Y ] = −(−1)|X||Y |[Y,X]

2. [[X,Y ], Z] = [X, [Y, Z]]− (−1)|X||Y |[Y, [X,Z]]

Or: the “Lie” object in the category SVect.

gl(m|n): gl0:
(

A 0
0 D

)
gl1:

(
0 B
C 0

)
[X,Y ] := XY − (−1)|X||Y |Y X.

“Bad” news for LSA

No Weyl’s theorem on complete reducibility; Borels are not conjugates;
isotropic (restricted) roots...
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Lie superalgebras

Fix g = gl(2p|2q) and k = gl(p|q)⊕ gl(p|q). Embed k into g:

((
A B
C D

)
,

(
A′ B′

C ′ D′

))
7→


A 0 B 0
0 A′ 0 B′

C 0 D 0
0 C ′ 0 D′


Here p+ (resp. p−) consists of matrices with non-zero entries only in the
upper right (resp. bottom left) sub-blocks in each of the four blocks.

Why this pair only?

1. Some argument depends on coordinates. This should be generalized.

2. Irreps highest weights are easy to compute.
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Supersymmetric Shimura operators

H = H (p, q) := {λ : λp+1 ≤ q} (hook partitions).
H d := {λ ∈ H : |λ| = d}.
Super analog of the Schmid decomposition: ([CW01, SSS20])

Sd(p+) =
⊕

λ∈H d

Wλ, S
d(p−) =

⊕
λ∈H d

W ∗
λ .

Wλ are of Type M, and dimEndk(Wλ) = 1. (Super version of Schur’s Lemma
may include the parity twist.) Set D = Uk/(Uk)k.

Supersymmetric Shimura Operators

Endk (Wλ) ∼= (W ∗
λ ⊗Wλ)

k
↪→

(
S(p−)⊗S(p+)

)k →Uk → D

1 7−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Dλ 7→ Dλ

And yes, the super Harish-Chandra isomorphism γ0 : D → Λ ⊆ P(a∗) exists,
but not well-understood.
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Symmetric polynomials

Permute the variables, nothing changes. Typically indexed by partitions!

We work with n variables. Denote
∏

xai
i by xa for a = (a1, . . . , an) ∈ Nn. The

usual ones:

1. mλ :=
∑

all perm α of λ x
α [e.g.

m(2,1,1)(x1, x2, x3) = x2
1x2x3 + x1x

2
2x3 + x1x2x

2
3]

2. sλ := det(x
λj+n−j
i )/det(xn−j

i )

The famous tableau formula:

sλ =
∑
T

xT

T : Semistandard Young tableau of λ. Fill in {1, . . . , n} in λ so they strictly
increase along columns, weakly increase along rows.
This is Type A symmetry: Sn is the Weyl group of Type A.
For Type BC : include the sign changes. Weyl group = Sn ⋉ Zn

2 .
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Okounkov polynomials

Λ is the ring of Type BC symmetric polynomials.
Λ := C[x1, . . . , xn]

Sn⋉Zn
2 (ring of even symmetric polynomials)

ρ := (ρ1, . . . , ρn), ρi := τ(n− i) + α. τ, α: parameters.

Theorem-Definition [Oko98, OO06], c.f. [SZ19]
The Okounkov polynomial Pµ(x; τ, α) is the unique polynomial in Λ satisfying

1. degPµ = 2|µ|;
2. Pµ(λ+ ρ) = 0 for λ ⊉ µ [vanishing properties];

3. Some normalization condition.

Has a similar tableau formula
∑

T φT (τ)
∏

s∈µ

(
x2
T (s) −#(s, τ, α)

)
where

φT (τ) is a coefficient/weight associated to each T (reversed tableau of µ).

ρ can be specialized to the half sum of positive roots for a restricted root system of

Type BC. [The case for Hermitian X]
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Examples

Consider the one-row partition (l) for l ∈ N.
Then ρ = α. We have [SZ19]:

P(l)(x; τ, α) =

l−1∏
k=0

(x2 − (k + α)2).

• Even symmetric;

• Degree 2l;

• Vanishes at (k + α) for k < l.

For (ln), we have

P(ln)(x; τ, α) =

l−1∏
i=0

n∏
j=1

(x2
j − (i+ α)2).
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Classical result

Recall the H-C isomorphism γ0 : D → Λ. It captures/transports the Type BC
symmetry (restricted root system → polynomials).

Endk (Wλ) → D
γ0

−→ Λ

1 7−−−−−−−→ γ0(Dλ)

Theorem (Sahi & Zhang [SZ19])
We have γ0(Dλ) = kλPλ for some explicit kλ ̸= 0.

Let Vµ be the irreducible g-module (of the same highest weight as Wµ). Then
by the Cartan–Helgason Theorem, Vµ has a spherical vector vk, i.e. k.vk = 0.
Dλ ∈ Uk (Dλ ∈ D) acts on vk as γ0(Dλ)(µ+ ρ), hence the word
spectrum/eigenvalue!
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Supersymmetric polynomials

For polynomials, supersymmetry = symmetry + translational invariance.

More precisely, in the Type BC situation:

Definition

Let {ϵi}pi=1 ∪ {δj}qj=1 be the standard basis for V = Cp+q. Denote the
coordinate functions for this basis as xi and yj . A polynomial
f ∈ P(V ) = C[xi, yj ] is said to be even supersymmetric if :

(i) f is symmetric in xi and yj separately and invariant under sign changes
of xi and yj ;

(ii) f(X + ϵi − δj) = f(X) if xi + yj = 0 for i = 1, . . . , p, j = 1, . . . , q.

We denote the subring of even supersymmetric polynomials as Λ0(V ).

!! (i) ⇐⇒ invariance under (Sp ⋉ Zn
2 )× (Sq ⋉ Zn

2 ) but (ii) is no longer group
invariance (not even linear).

In fact, one may use a suitable Weyl groupoid action to capture (i & ii).
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Sergeev–Veselov Polynomials

In [SZ23], we proved that Im γ0 is exactly Λ0(a∗), the ring of even
supersymmetric polynomials on a∗, previously proved also in [Zhu22].

Proposition-Definition [SV09]
For each µ ∈ H , there is a unique polynomial Jµ ∈ Λ0 of degree 2|µ| s.t.

Jµ(λ+ ρ) = 0, for all λ ⊉ µ, λ ∈ H

and that Jµ(µ+ ρ) = explicit non-zero number. (Has a tableau formula too!)

Here λ is some choice of coordinates (Frobenius coordinates). ρ is the Weyl
vector, the half sum of the positive restricted roots.
E.g. p = q = 1, for the restricted root system, ρ = (−1, 1).

1. µ = (1), λ = ∅, and λ+ ρ = (−1, 1), J(1) ∝ x2 − y2.

2. µ = (2), λ = (1n), and λ+ ρ = (1, 2n− 1), J(2) ∝ (x2 − y2)(x2 − 1).
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Main Result

Theorem A (Sahi–Z. [SZ23])
We have γ0(Dµ) = kµJµ where kµ = (−1)|µ|

∏
(i,j)∈µ

(
µi − j + µ′

j − i+ 1
)
.

Main thing: show the vanishing properties.

Indirect [SZ23] Direct (partial result) [Zhu22]
(analogous to [SZ19])

Theorem B Theorem D

Theorem C Conjecture 1

Theorem A

Theorem E
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Results [SZ23]

Let the center of U be Z. Then Z ⊆ Uk and we have π : Z ↪→ Uk ↠ D.

The
point: Z is well-understood. Acts nicely on modules.

Theorem B (Sahi–Z. [SZ23])
The map π is surjective. In particular, there exist Zµ ∈ Z such that
π(Zµ) = Dµ. (So Dµ = π(Dµ) can be captured by some central element!)

Let Iλ := U⊗U(q) Wλ be the generalized Verma module for q = k⊕ p+.

Theorem C (Sahi–Z. [SZ23])
The central element Zµ acts on Iλ by 0 when λ ⊉ µ.

The point: Use rep theoretic machinery to get the vanishing properties.
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Results

Theorem B

The map π : Z → D = Uk/(Uk)k is surjective. In particular, there exist Zµ ∈ Z
such that π(Zµ) = Dµ.

Z D

Λ(h∗) Λ0(a∗)

π

γ ≀ γ0≀

Res

h := a⊕ t+: Cartan subalgebra of g containing a.
γ : Z → P(h∗): the usual Harish-Chandra isomorphism defined on Z. Much
well understood!
Res: the restriction map induced from the decomposition h = a⊕ t+.
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Results

Theorem C

The central element Zµ acts on Iλ := U⊗U(q) Wλ by 0 when λ ⊉ µ.

Sketch of the proof of Theorem C

1. Iλ = U⊗U(q) Wλ
∼= S(p−)⊗Wλ

∼=
⊕(

W ∗
µ ⊗Wλ

)
(as k-modules).

Spherical: Ikλ ⊆ W ∗
λ ⊗Wλ with dim Ikλ = 1.

2. Rep map Wµ ⊗ Ikλ → Iλ has image homomorphic to Wµ.

3. Homk(Wµ, Iλ) = {0} for λ ⊉ µ.

4. Dµ =
∑

ξiηi for ξi ∈ W ∗
µ and ηi ∈ Wµ. So Dµ.I

k
λ = {0} = Dµ.I

k
λ.

5. Zµ also acts on Ikλ by 0. Acts by 0 on the entirety of Iλ (since Zµ ∈ Z)!

The main thing is that Iλ has t-highest weight and is infinite dimensional. We
don’t know by what “polynomial” Dµ acts on Ikλ directly!
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Results

Theorem A

We have γ0(Dµ) = kµJµ where kµ = (−1)|µ|
∏

(i,j)∈µ

(
µi − j + µ′

j − i+ 1
)
.

Sketch of the proof of Theorem A

Z D

Λ(h∗) Λ0(a∗)

π

γ ≀ γ0≀

Res

=⇒ γ0(Dµ)(λ+ ρ) = γ(Zµ)(λ+ ρ)

By Theorem C, Zµ acts by 0 on Iλ for λ ⊉ µ. But Z acts exactly by γ. Thus
γ0(Dµ)(λ+ ρ) = 0, for all λ ⊉ µ, λ ∈ H .

To pin down kµ, we compare the leading term of γ0(Dµ) and that of Jµ,
which has a tableau formula. The tableau formula of the super Jack
polynomials ([SV05]) solves kµ in the end.
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Results

[Zhu22] Old method:
Consider the irreducible quotient Vλ of Iλ.

Fact: By [Zhu22, Theorem 4.3], Vλ

is finite dimensional (see Chapter 4 in my dissertation). The proof is
combinatorial in nature.

Conjecture 1 (Z. [Zhu22])
Every irreducible g-module Vλ for λ ∈ H (p, q) is spherical.

Theorem D (Z. [Zhu22])
Conjecture 1 is true for p = q = 1.

Theorem E (Z. [Zhu22])
Theorem A follows from Conjecture 1.
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Results

Theorem E

Theorem A follows from Conjecture 1.

Sketch of the proof of Theorem E

1. Rep map Wµ ⊗ V k
λ → Vλ has image homomorphic to Wµ.

2. Homk(Wµ, Vλ) = {0} for λ ⊉ µ.

3. Dµ =
∑

ξiηi for ξi ∈ W ∗
µ and ηi ∈ Wµ. So Dµ.V

k
λ = {0} = Dµ.V

k
λ .

This directly gives the vanishing properties.
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Scope

Shimura Capelli quadratic Capelli
• •
⌣ [SZ19] [KS93, Sah94] [SS19]

Z2 [Zhu22, SZ23] [SSS20] ?

q ? [LSS22] ?

Z2, q ? ? ?

Table: Scope of the theory. Z2: super. q: quantum.

1. Capelli identity – Capelli operators – Jordan algebras – Type A
interpolation polynomials

2. Shimura eigenvalue problem – Shimura operators – Jordan algebras –
Type BC interpolation polynomials

3. Really similar construction. Act on different objects.
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Thank you!
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