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Background

Symmetric functions naturally arise in representation theory.

1. Schur function, Weyl character formula, Type A objects

2. Root systems, various differential operators, eigenfunctions

3. CMS operators, Dunkl & Cherednik operators (related to DAHA)

4. Jack, Hall & Macdonald polynomials

5. many more...
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Punch lines

The image of 1 under good map is good.

The image of 1 under super good map is super good.

Good maps: Harish-Chandra isom; Images: symmetric polynomials.
We solved the Type A super analog:

Shimura Operators

on Hermitian sym. sp.

Supersymmetric Shimura Operators

of Hermitian sym. superpairs

Okounkov Polynomials Sergeev–Veselov Polynomials

superization

[SZ19]

superization

[Zhu22, SZ23]
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Background

1. Shimura: multivariate generalization of nearly holomorphic automorphic forms.

2. Introduced certain G-invariant differential operators on a Hermitian X := G/K
[Shi90] Invariant differential operators on hermitian symmetric spaces, Ann. of Math.

3. Wanted symmetric & non-negative ones spanning the space of inv. diff. op. D(X)

4. Rank 1: Laplace–Beltrami operators generalize Laplace operators

5. Sahi & Zhang’s [SZ19]: spectrum of Shimura operators ∼ Okounkov polynomials.

6. These are the even & symmetric polynomials with prescribed zeros (thus the word
interpolation).

7. The theory of symmetric functions gives answers to Shimura’s problem.
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In context (frakturs)

Let X := G/K be as above. Change the point of view to (complexified) Lie algebras.

1. (g, k): Harish-Chandra decomposition [(−1, 0, 1)-grading]
g = p− ⊕ k⊕ p+(= k⊕ p)

[k, p±] = p±, [p+, p+] = [p−, p−] = 0, [p+, p−] = k

E.g. (gl(2n), gl(n)⊕ gl(n)) (The center doesn’t matter here)(
k p+

p− k

)
2. D = D(X): space of invariant differential operators on X.

U := U(g); Uk := Zk(U); (Uk)k := Uk ∩ Uk.

3. Then D ∼= Uk/(Uk)k. This is the algebraic description of D.

4. g = k⊕ a⊕ n: Iwasawa decomposition (Group: G = KAN). Here a is maximally
abelian in p = p− ⊕ p+. May identify S(a) with P(a∗).

5. γ0 : D → Λ ⊆ P(a∗): the Harish-Chandra isomorphism. Good map! Essentially a
symmetry-preserving projection, shifted by the Weyl vector ρ
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Schmid decomposition and Shimura operators

P(n) := {λ : ℓ(λ) = n}, Pd(n) := {λ ∈ P(n) : |λ| = d}.

Schmid decomposition ([Sch70, FK90]) for k-mods (multiplicity-free):

Sd(p+) =
⊕

λ∈Pd(n)

Wλ, S
d(p−) =

⊕
λPd(n)

W ∗
λ .

Here we choose a form to identify p− with (p+)∗. The highest weights are parametrized
using the HC strongly orthogonal roots.

Shimura Operators

Endk (Wλ) ∼= (W ∗
λ ⊗Wλ)

k
↪→

(
S
(
p−

)
⊗S

(
p+

))k →Uk → D

1 7−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Dλ 7→ Dλ

Call Dλ the Shimura operator associated with λ .

A basis parameterized by partitions! Nice images of 1’s.
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Okounkov Polynomials

Λ := C[x1, . . . , xn]
Sn⋉Zn

2 (ring of even symmetric polynomials)
ρ := (ρ1, . . . , ρn), ρi := τ(n− i) + α. τ, α: parameters.

Theorem-Definition [Oko98, OO06], c.f. [SZ19]
The Okounkov polynomial Pµ(x1, . . . , xn; τ, α) is the unique polynomial in Λ satisfying

1. degPµ = 2|µ|;
2. Pµ(λ+ ρ) = 0 for λ ⊉ µ [the vanishing properties];

3. Some normalization condition (at µ+ ρ).

1. They are interpolation polynomials (interpolated by zeros);

2. ρ can be specialized to the half sum of positive roots for a restricted root system of Type BC
[The case for Hermitian X];

3. For the “usual” Type A symmetry, there are Knop–Sahi polynomials [KS96].
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An Example

Consider the one-row partition (l) for l ∈ N (so (k) ⊉ (l) means k < l).
n = 1 ρ = α. We have [SZ19]:

P(l)(x; τ, α) =

l−1∏
i=0

(x2 − (i+ α)2) =

l−1∏
i=0

(x+ α− i)(x− α+ i).

• Trivially symmetric;

• Degree 2l;

• Vanishes at (k + α) for k < l.

For (ln), we have

P(ln)(x; τ, α) =
l−1∏
i=0

n∏
j=1

(x2
j − (i+ α)2)
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Classical result

Recall the H-C isomorphism γ0 : D → Λ. It captures/transports the Type BC symmetry
(restricted root system → polynomials).

Endk (Wλ) → D
γ0

−→ Λ

1 7−−−−−−−→ γ0(Dλ)

Theorem (Sahi & Zhang [SZ19])
We have γ0(Dλ) = kλPλ for some explicit kλ ̸= 0.

Let Vµ be the irreducible g-module (of the same highest weight as Wµ). Then by the
Cartan–Helgason Theorem, Vµ has a spherical vector vk, i.e. k.vk = 0. Dλ ∈ Uk (Dλ ∈ D)
acts on vk as γ0(Dλ)(µ+ ρ), hence the word spectrum/eigenvalue!
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Lie Superalgebras

Definition

A Lie superalgebra is a vector superspace g = g0 ⊕ g1 with a bilinear map [−,−]: g⊗ g → g
satisfying

1. [X,Y ] = −(−1)|X||Y |[Y,X]

2. [[X,Y ], Z] = [X, [Y,Z]]− (−1)|X||Y |[Y, [X,Z]]

gl(m|n):

gl0:

(
A 0
0 D

)
gl1:

(
0 B
C 0

)
[X,Y ] := XY − (−1)|X||Y |Y X.

Bad news for LSA

No Weyl’s theorem on complete reducibility; Borels are not conjugates; isotropic
(restricted) roots...
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Supersymmetric Shimura operators

Fix g = gl(2p|2q) and k = gl(p|q)⊕ gl(p|q).
H = H (p, q) := {λ : λp+1 ≤ q} (hook partitions). H d := {λ ∈ H : |λ| = d}.
Super analog of the Schmid decomposition: ([CW01, SSS20])

Sd(p+) =
⊕

λ∈H d

Wλ, S
d(p−) =

⊕
λ∈H d

W ∗
λ .

Wλ are of Type M, and dimEndk(Wλ) = 1. (Super version of Schur’s Lemma may include
the parity twist.) Set D = Uk/(Uk)k.

Supersymmetric Shimura Operators [super cousins]

Endk (Wλ) ∼= (W ∗
λ ⊗Wλ)

k
↪→

(
S(p−)⊗S(p+)

)k →Uk → D

1 7−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Dλ 7→ Dλ

And yes, the super Harish-Chandra isomorphism γ0 : D → Λ ⊆ P(a∗) exists, but not
well-understood. I think a paper on this is coming out. Not mine.
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And yes, the super Harish-Chandra isomorphism γ0 : D → Λ ⊆ P(a∗) exists, but not
well-understood. I think a paper on this is coming out. Not mine.
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Sergeev–Veselov Polynomials

Polynomial supersymmetry = symmetry in {xi} and {yj} + translational invariance
“across {xi, yj}”.

In [SZ23], we proved that Im γ0 is exactly Λ0(a∗), the ring of even supersymmetric
polynomials on a∗, previously proved also in [Zhu22].

Proposition-Definition [SV09]
For each µ ∈ H , there is a unique polynomial Jµ ∈ Λ0 of degree 2|µ| s.t.

Jµ(λ+ ρ) = 0, for all λ ⊉ µ, λ ∈ H

and that Jµ(µ+ ρ) is certain explicit non-zero constant.

λ: some choice of (Frobenius) coordinates. ρ: Weyl vector of restricted roots.
E.g. p = q = 1, for the restricted root system, ρ = (−1, 1).

1. µ = (1), λ = ∅, and λ+ ρ = (−1, 1), J(1) ∝ x2 − y2.

2. µ = (2), λ = (1n), and λ+ ρ = (1, 2n− 1), J(2) ∝ (x2 − y2)(x2 − 1).



13/20

Background Main results Future Directions References

Sergeev–Veselov Polynomials

Polynomial supersymmetry = symmetry in {xi} and {yj} + translational invariance
“across {xi, yj}”.
In [SZ23], we proved that Im γ0 is exactly Λ0(a∗), the ring of even supersymmetric
polynomials on a∗, previously proved also in [Zhu22].

Proposition-Definition [SV09]
For each µ ∈ H , there is a unique polynomial Jµ ∈ Λ0 of degree 2|µ| s.t.

Jµ(λ+ ρ) = 0, for all λ ⊉ µ, λ ∈ H

and that Jµ(µ+ ρ) is certain explicit non-zero constant.

λ: some choice of (Frobenius) coordinates. ρ: Weyl vector of restricted roots.
E.g. p = q = 1, for the restricted root system, ρ = (−1, 1).

1. µ = (1), λ = ∅, and λ+ ρ = (−1, 1), J(1) ∝ x2 − y2.

2. µ = (2), λ = (1n), and λ+ ρ = (1, 2n− 1), J(2) ∝ (x2 − y2)(x2 − 1).



13/20

Background Main results Future Directions References

Sergeev–Veselov Polynomials

Polynomial supersymmetry = symmetry in {xi} and {yj} + translational invariance
“across {xi, yj}”.
In [SZ23], we proved that Im γ0 is exactly Λ0(a∗), the ring of even supersymmetric
polynomials on a∗, previously proved also in [Zhu22].

Proposition-Definition [SV09]
For each µ ∈ H , there is a unique polynomial Jµ ∈ Λ0 of degree 2|µ| s.t.

Jµ(λ+ ρ) = 0, for all λ ⊉ µ, λ ∈ H

and that Jµ(µ+ ρ) is certain explicit non-zero constant.

λ: some choice of (Frobenius) coordinates. ρ: Weyl vector of restricted roots.

E.g. p = q = 1, for the restricted root system, ρ = (−1, 1).

1. µ = (1), λ = ∅, and λ+ ρ = (−1, 1), J(1) ∝ x2 − y2.

2. µ = (2), λ = (1n), and λ+ ρ = (1, 2n− 1), J(2) ∝ (x2 − y2)(x2 − 1).



13/20

Background Main results Future Directions References

Sergeev–Veselov Polynomials

Polynomial supersymmetry = symmetry in {xi} and {yj} + translational invariance
“across {xi, yj}”.
In [SZ23], we proved that Im γ0 is exactly Λ0(a∗), the ring of even supersymmetric
polynomials on a∗, previously proved also in [Zhu22].

Proposition-Definition [SV09]
For each µ ∈ H , there is a unique polynomial Jµ ∈ Λ0 of degree 2|µ| s.t.

Jµ(λ+ ρ) = 0, for all λ ⊉ µ, λ ∈ H

and that Jµ(µ+ ρ) is certain explicit non-zero constant.

λ: some choice of (Frobenius) coordinates. ρ: Weyl vector of restricted roots.
E.g. p = q = 1, for the restricted root system, ρ = (−1, 1).

1. µ = (1), λ = ∅, and λ+ ρ = (−1, 1), J(1) ∝ x2 − y2.

2. µ = (2), λ = (1n), and λ+ ρ = (1, 2n− 1), J(2) ∝ (x2 − y2)(x2 − 1).



13/20

Background Main results Future Directions References

Sergeev–Veselov Polynomials

Polynomial supersymmetry = symmetry in {xi} and {yj} + translational invariance
“across {xi, yj}”.
In [SZ23], we proved that Im γ0 is exactly Λ0(a∗), the ring of even supersymmetric
polynomials on a∗, previously proved also in [Zhu22].

Proposition-Definition [SV09]
For each µ ∈ H , there is a unique polynomial Jµ ∈ Λ0 of degree 2|µ| s.t.

Jµ(λ+ ρ) = 0, for all λ ⊉ µ, λ ∈ H

and that Jµ(µ+ ρ) is certain explicit non-zero constant.

λ: some choice of (Frobenius) coordinates. ρ: Weyl vector of restricted roots.
E.g. p = q = 1, for the restricted root system, ρ = (−1, 1).

1. µ = (1), λ = ∅, and λ+ ρ = (−1, 1), J(1) ∝ x2 − y2.

2. µ = (2), λ = (1n), and λ+ ρ = (1, 2n− 1), J(2) ∝ (x2 − y2)(x2 − 1).



14/20

Background Main results Future Directions References

Main Results

Theorem A (Sahi–Z. [SZ23])
We have γ0(Dµ) = kµJµ where kµ = (−1)|µ|

∏
(i,j)∈µ

(
µi − j + µ′

j − i+ 1
)
.

The main thing is to show the vanishing properties. Need two other results.

Let the center of U be Z. Then Z ⊆ Uk and we have π : Z ↪→ Uk ↠ D. Establish the
commutative diagram:

Z D

P(h∗) P(a∗)

π

γ γ0

Res
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Main Results

Z D

P(h∗) P(a∗)

π

γ γ0

Res

Zµ Dµ

γ(Zµ) γ0(Dµ)

π

γ γ0

Res

Theorem B (Sahi–Z. [SZ23])
The map π is surjective. In particular, there exists Zµ ∈ Z such that π(Zµ) = Dµ. (So
Dµ = π(Dµ) can be captured by some central element!)

Let Iλ := U⊗U(q) Wλ be the generalized Verma module for q = k⊕ p+.

Theorem C (Sahi–Z. [SZ23])
The central element Zµ acts on Iλ by 0 when λ ⊉ µ.
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Future Directions

• Other pairs (Jordan superalgebras+TKK construction) c.f. [SSS20].

• No full generalization of Cartan–Helgason theorem in the super scenario. The only
partial result is obtained by Alldridge and Schmittner [AS15]. Not enough Vλ are
guaranteed to be spherical. This is used in the old method [Zhu22]. Some progress!

• Differential operators (on (possibly Laurent) polynomials) ∼ symmetric polynomials.
This Shimura theory should in principle help us to explicitly write down a family of
commuting differential operators (also commuting with the CMS operators) Ongoing!
Nothing wrong so far...
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Scope: Shimura and friends

Shimura Capelli quadratic Capelli
• •
⌣ [SZ19] [KS93, Sah94] [SS19]
Z2 [Zhu22, SZ23] [SSS20] ?
q ? [LSS22] ?

Z2, q ? ? ?
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Thank you!
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Set up

Fix g = gl(2p|2q) and k = gl(p|q) ⊕ gl(p|q). Embed k into g:

((
A B

C D

)
,

(
A′ B′

C′ D′

))
7→


A 0 B 0

0 A′ 0 B′
C 0 D 0

0 C′ 0 D′



Here p+ (resp. p−) consists of matrices with non-zero entries only in the upper right (resp. bottom left) sub-blocks in each of the
four blocks.

Technical details:

1. Let J := 1
2

diag(I,−I, I,−I), and θ := Ad exp(iπJ). Then θ has fixed point subalgebra k.

2. The standard diagonal Cartan is denoted as t (in both g and k, “max. compact”)

3. Fix a θ-stable, maximally split Cartan h containing a, a maximal toral subalgebra in p
0

(for Iwasawa decomp.).
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Supersymmetric polynomials

For polynomials, supersymmetry = symmetry + translational invariance.

More precisely, in the Type BC situation:

Definition
Let {ϵi}

p
i=1

∪ {δj}
q
j=1

be the standard basis for V = Cp+q . Denote the coordinate functions for this basis as xi and yj . A

polynomial f ∈ P(V ) = C[xi, yj ] is said to be even supersymmetric if :

(i) f is symmetric in xi and yj separately and invariant under sign changes of xi and yj ;

(ii) f(X + ϵi − δj) = f(X) if xi + yj = 0 for i = 1, . . . , p, j = 1, . . . , q.

We denote the subring of even supersymmetric polynomials as Λ0(V ).

!! (i) ⇐⇒ invariance under (Sp ⋉ Zn2 ) × (Sq ⋉ Zn2 ) but (ii) is no longer group invariance (not even linear).

In fact, one may use a suitable Weyl groupoid action to capture (i & ii).
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